Phenotype and Viability of MLO-Y4 Cells Is Maintained by TGFβ₃ in a Serum-Dependent Manner within a 3D-Co-Culture with MG-63 Cells

The osteocyte network inside the bone matrix is of functional importance and osteocyte cell death is a characteristic feature of pathological bone diseases. Osteocytes have emerged as key regulators of bone tissue maintenance, yet maintaining their phenotype during in vitro culture remains challengi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2018-06, Vol.19 (7), p.1932
Main Authors: Jähn, Katharina, Mason, Deborah J, Ralphs, Jim R, Evans, Bronwen A J, Archer, Charles W, Richards, R Geoff, Stoddart, Martin J
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The osteocyte network inside the bone matrix is of functional importance and osteocyte cell death is a characteristic feature of pathological bone diseases. Osteocytes have emerged as key regulators of bone tissue maintenance, yet maintaining their phenotype during in vitro culture remains challenging. A 3D co-culture system for osteocytes with osteoblasts was recently presented, enabling the determination of more physiological effects of growth factors on cells in vitro. MLO-Y4 cells were embedded within a type I collagen gel and cultured in the presence of surface MG-63 cells. Co-culture was performed in the presence or absence of TGFβ₃. Gene expression by quantitative PCR, protein expression by fluorescent immunohistochemistry and cell viability tests were performed. The 3D co-culture induced cell differentiation of MG-63 cells seen by increased type I collagen and osteocalcin mRNA expression. TGFβ₃ maintained osteocyte differentiation of MLO-Y4 cells during co-culture as determined by stable E11 and osteocalcin mRNA expression till day 4. Interestingly, most of the effects of TGFβ₃ on co-cultured cells were serum-dependent. Also, TGFβ₃ reduced cell death of 3D co-cultured MLO-Y4 cells in a serum-dependent manner. This study shows that 3D co-culture upregulates differentiation of MG-63 cells to a more mature osteoblast-like phenotype; while the addition of TGFβ₃ maintained the characteristic MLO-Y4 osteocyte-like phenotype and viability in a serum-dependent manner.
ISSN:1422-0067
1661-6596
1422-0067