Loading…

Higgs portal dark matter and neutrino mass and mixing with a doubly charged scalar

We consider an extension of the Standard Model involving two new scalar particles around the TeV scale: a singlet neutral scalar ϕ, to be eventually identified as the Dark Matter candidate, plus a doubly charged SU(2)L singlet scalar, S++, that can be the source for the non-vanishing neutrino masses...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. B 2017-06, Vol.769 (C), p.121-128
Main Authors: Hierro, I.M., King, S.F., Rigolin, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider an extension of the Standard Model involving two new scalar particles around the TeV scale: a singlet neutral scalar ϕ, to be eventually identified as the Dark Matter candidate, plus a doubly charged SU(2)L singlet scalar, S++, that can be the source for the non-vanishing neutrino masses and mixings. Assuming an unbroken Z2 symmetry in the scalar sector, under which only the additional neutral scalar ϕ is odd, we write the most general (renormalizable) scalar potential. The model may be regarded as a possible extension of the conventional Higgs portal Dark Matter scenario which also accounts for neutrino mass and mixing. This framework cannot completely explain the observed positron excess. However a softening of the discrepancy observed in conventional Higgs portal framework can be obtained, especially when the scale of new physics responsible for generating neutrino masses and lepton number violating processes is around 2 TeV.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2017.03.037