Loading…
What Is the Nature of Little Red Dots and what Is Not, MIRI SMILES Edition
Abstract We study 31 little red dots (LRD) detected by JADES/NIRCam and covered by the SMILES/MIRI survey, of which ∼70% are detected in the two bluest MIRI bands and 40% in redder MIRI filters. The median/quartiles redshifts are z = 6.9 5.9 7.7 (55% spectroscopic). The spectral slopes flatten in th...
Saved in:
Published in: | The Astrophysical journal 2024-06, Vol.968 (1), p.4 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We study 31 little red dots (LRD) detected by JADES/NIRCam and covered by the SMILES/MIRI survey, of which ∼70% are detected in the two bluest MIRI bands and 40% in redder MIRI filters. The median/quartiles redshifts are z = 6.9 5.9 7.7 (55% spectroscopic). The spectral slopes flatten in the rest-frame near-infrared, consistent with a 1.6 μ m stellar bump but bluer than direct pure emission from active galactic nuclei (AGN) tori. The apparent dominance of stellar emission at these wavelengths for many LRDs expedites stellar mass estimation: the median/quartiles are log M ⋆ / M ⊙ = 9.4 9.1 9.7 . The number density of LRDs is 10 −4.0±0.1 Mpc −3 , accounting for 14% ± 3% of the global population of galaxies with similar redshifts and masses. The rest-frame near-/mid-infrared (2–4 μ m) spectral slope reveals significant amounts of warm dust (bolometric attenuation ∼3–4 mag). Our spectral energy distribution modeling implies the presence of 10 mag. We find a wide variety in the nature of LRDs. However, the best-fitting models for many of them correspond to extremely intense and compact starburst galaxies with mass-weighted ages 5–10 Myr, very efficient in producing dust, with their global energy output dominated by the direct (in the flat rest-frame ultraviolet and optical spectral range) and dust-recycled emission from OB stars with some contribution from an obscured AGN (in the infrared). |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ad38bb |