Loading…

Genome editing opens a new era of genetic improvement in polyploid crops

Sequence-specific nucleases (SSN) that generate double-stranded DNA breaks (DSBs) in genes of interest are the key to site-specific genome editing in plants. Genome editing has developed into one method of reducing undesirable traits in crops by the induction of knockout mutations. Different SSN-med...

Full description

Saved in:
Bibliographic Details
Published in:The Crop journal 2019-04, Vol.7 (2), p.141-150
Main Authors: Zaman, Qamar U., Li, Chao, Cheng, Hongtao, Hu, Qiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sequence-specific nucleases (SSN) that generate double-stranded DNA breaks (DSBs) in genes of interest are the key to site-specific genome editing in plants. Genome editing has developed into one method of reducing undesirable traits in crops by the induction of knockout mutations. Different SSN-mediated genome-editing systems, including LAGLIDADG homing endonucleases or meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, are emerging as robust tools for introducing functional mutations in polyploid crops including citrus, wheat, cotton, soybean, rapeseed, potato, grapes, Camelina sativa, dandelion, and tobacco. The approach utilizes knowledge of biological mechanisms for targeted induction of DSBs and their error-prone repair, allowing highly specific changes at designated genome loci. In this review, we briefly describe genome-editing technologies and their application to genetic improvement of polyploid crops.
ISSN:2214-5141
2214-5141
DOI:10.1016/j.cj.2018.07.004