Loading…
Development of a Three-Stage Hybrid Model by Utilizing a Two-Stage Signal Decomposition Methodology and Machine Learning Approach to Predict Monthly Runoff at Swat River Basin, Pakistan
Precise and reliable hydrological runoff prediction plays a significant role in the optimal management of hydropower resources. Nevertheless, the hydrological runoff practically possesses a nonlinear dynamics, and constructing appropriate runoff prediction models to deal with the nonlinearity is a c...
Saved in:
Published in: | Discrete dynamics in nature and society 2020, Vol.2020 (2020), p.1-19 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precise and reliable hydrological runoff prediction plays a significant role in the optimal management of hydropower resources. Nevertheless, the hydrological runoff practically possesses a nonlinear dynamics, and constructing appropriate runoff prediction models to deal with the nonlinearity is a challenging task. To overcome this difficulty, this paper proposes a three-stage novel hybrid model, namely, CVS (CEEMDAN-VMD-SVM), by coupling the support vector machine (SVM) with a two-stage signal decomposition methodology, combining complete ensemble empirical decomposition with additive noise (CEEMDAN) and variational mode decomposition (VMD), to obtain inclusive information of the runoff time series. Hydrological runoff data of the Swat River, Pakistan, from 1961 to 2015 were taken for prediction. CEEMDAN decomposes the runoff time series into subcomponents, and VMD performs further decomposition of the high-frequency component obtained after CEEMDAN decomposition to improve the prediction activity. Afterward, the SVM algorithm was applied to the decomposed subcomponents for the prediction purpose. Finally, four statistical indices are utilized to measure the performance of the CVS model compared with other hybrid models including CEEMDAN-VMD-MLP (multilayer perceptron), CEEMDAN-SVM, VMD-SVM, CEEMDAN-MLP, VMD-MLP, SVM, and MLP. The CVS model performs better during the training period by reducing RMSE by 71.28% and 40.06% compared with MLP and CEEDMAD-VMD-SVM models, respectively. However, during the testing period, the error reductions include RMSE by 68.37% and 35.33% compared with MLP and CEEDMAD-VMD-SVM models, respectively. The results highlight that the CVS model outperforms other models in terms of accuracy and error reduction. The research also highlights the superiority of other hybrid models over standalone in predicting the hydrological runoff. Therefore, the proposed hybrid model is applicable for the nonlinear features of runoff time series with feasibility for future planning and management of water resources. |
---|---|
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2020/7345676 |