Loading…

Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions

The Abraham solvation parameter model, a linear free energy relationship (LFER) approach, has been used to characterize a polymeric zwitterionic (sulfobetaine) column in HILIC mode. When acetonitrile (MeCN) is used in the preparation of mobile phases the main solute characteristics affecting the chr...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2019-12, Vol.1092, p.132-143
Main Authors: Subirats, Xavier, Abraham, Michael H., Rosés, Martí
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Abraham solvation parameter model, a linear free energy relationship (LFER) approach, has been used to characterize a polymeric zwitterionic (sulfobetaine) column in HILIC mode. When acetonitrile (MeCN) is used in the preparation of mobile phases the main solute characteristics affecting the chromatographic behavior of analytes are the molecular size and the hydrogen-bonding (both acidity and basicity) interactions. The former property is more favorable in the acetonitrile-rich mobile phase, reducing thus the retention, but the latter reveals a higher affinity for the water layer adsorbed on the stationary phase, enhancing retention. However, if the aprotic acetonitrile is replaced by methanol, a hydrogen-bond acidic solvent, solute hydrogen-bond basicity does not contribute any more to retention, quite the opposite. Thus, a slightly different selectivity is observed in methanol/water than in acetonitrile/water. Normal-phase mode and HILIC-MeCN share the same main factors affecting retention. For reversed-phase and immobilized artificial membrane (IAM) chromatography, the solute molecular size increase retention because of the lower amount of energy required in the formation of a cavity in the solvated stationary phase. On the contrary, the analyte hydrogen-bond basicity favors interactions with the hydroorganic mobile phase and reduces retention. The determined parameters justify the reversed selectivity commonly observed in HILIC in reference to reversed-phase. In most instances, the least retained solutes in reversed-phase are the most retained in HILIC. [Display omitted] •The Abraham model is used for the characterization of a HILIC column.•Selectivity depends on the organic solvent used, acetonitrile or methanol.•HILIC is compared to normal-phase, reversed-phase and IAM retention selectivity.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2019.09.010