Loading…

Mixed resistive unbalance and winding inter-turn faults model of permanent magnet synchronous motors

This work analyzes the behavior of surface-mounted permanent magnet synchronous motors (SPMSMs) operating under stator faults. The studied faults are resistive unbalance and winding inter-turn short circuits, which may lead to unbalanced conditions of the motor. Both faults may reduce motor efficien...

Full description

Saved in:
Bibliographic Details
Published in:Electrical engineering 2015-03, Vol.97 (1), p.75-85
Main Authors: Urresty, Julio-César, Riba, Jordi-Roger, Romeral, Luís, Ortega, Juan Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work analyzes the behavior of surface-mounted permanent magnet synchronous motors (SPMSMs) operating under stator faults. The studied faults are resistive unbalance and winding inter-turn short circuits, which may lead to unbalanced conditions of the motor. Both faults may reduce motor efficiency and performance and produce premature ageing. This work develops an analytical model of the motor when operating under stator faults. By this way, the theoretical basis to understand the effects of resistive unbalance and stator winding inter-turn faults in SPMSMs is settled. This work also compares two methods for detecting and discriminating both faults. For this purpose, a method based on the analysis of the zero-sequence voltage component is presented, which is compared to the traditional method, i.e. the analysis of the stator currents harmonics. Both simulation and experimental results presented in this work show the potential of the zero-sequence voltage component method to provide helpful and reliable data to carry out a simultaneous diagnosis of resistive unbalance and stator winding inter-turn faults.
ISSN:0948-7921
0003-9039
1432-0487
DOI:10.1007/s00202-014-0316-z