Loading…

Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

•LIFT technique is investigated to improve heterojunction HJ solar cells.•Doped silicon films are adequate precursors for LIFT application in HJ cells.•LIFT leads to a reduction of the series resistance of a-Si HJ diodes.•LIFT allows the improvement of the front contact resistance in a-Si HJ solar c...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2015-05, Vol.336, p.89-95
Main Authors: Colina, M., Morales-Vilches, A., Voz, C., Martín, I., Ortega, P., Orpella, A., López, G., Alcubilla, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•LIFT technique is investigated to improve heterojunction HJ solar cells.•Doped silicon films are adequate precursors for LIFT application in HJ cells.•LIFT leads to a reduction of the series resistance of a-Si HJ diodes.•LIFT allows the improvement of the front contact resistance in a-Si HJ solar cells. In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064nm, lamp-pumped system, working at pulse durations of 100 and 400ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n+p local junctions were created by LIFT and the resulting J–V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2014.09.172