Loading…

Novel device structure for phase change memory toward low-current operation

We present a novel device architecture for low set and reset currents in phase change random access memory (PCRAM). In this structure, the sidewall of phase-change film is contacted with the vertical heating layer. In particular, to realize a small contact area of under 50 nm2 for low reset current,...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2015-09, Vol.54 (9), p.94302
Main Authors: Kim, Eunha, Kang, Nam Soo, Yang, Hyung-Jun, Sutou, Yuji, Song, Yun-Heub
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel device architecture for low set and reset currents in phase change random access memory (PCRAM). In this structure, the sidewall of phase-change film is contacted with the vertical heating layer. In particular, to realize a small contact area of under 50 nm2 for low reset current, this structure includes stacked layers consisting of extremely thin phase change material (PCM) and conduction films, the fabrication method of which is proposed. We estimated set and reset currents for the proposed structure by the device simulation method. Here, we confirmed that a contact area of 30 nm2 in this structure, where Ge2Sb2Te5 is used as PCM, provides a reset current of 13.5 µA and a set current of 4 µA, which are promising for the scaling down of PCM. Furthermore, it is confirmed that the thinner PCM in this structure provides less thermal disturbance to the neighboring cell. From the results, we expect this structure to be a promising candidate for a high-density nonvolatile memory architecture with PCM.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.54.094302