Loading…

Development of a microfluidic-based taste sensor using lipid polymer membrane

Abstract This study aims to develop a microfluidic-based taste sensor for detecting time-dependent human taste sensations. Lipid polymer membranes were welded to perforated polycarbonate films with organic solvents to monitor the adsorption and desorption of taste substances to lipid polymer membran...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2023-06, Vol.62 (SG), p.SG1014
Main Authors: Tahara, Yusuke, Sassa, Fumihiro, Takigawa, Ryo, Kurihara, Yuma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study aims to develop a microfluidic-based taste sensor for detecting time-dependent human taste sensations. Lipid polymer membranes were welded to perforated polycarbonate films with organic solvents to monitor the adsorption and desorption of taste substances to lipid polymer membranes and to physically immobilize lipid polymer membranes to withstand the pressure of a pumped liquid. A polydimethylsiloxane flow channel was bonded chemically to the polycarbonate film with the lipid polymer membrane using 3-aminopropylethoxysilane. A fabricated microfluidic-based taste sensor could measure the membrane potential change with time due to the adsorption and desorption of tannic acid, an astringency substance, onto a lipid polymer membrane. The proposed sensor could be useful as a tool for assessing the time-course changes in human taste.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/acb4fa