Loading…

Effect of Depth on the Seismic Response of Square Tunnels

Response of tunnels to earthquake induced loads is a complex dynamic soil-structure interaction problem. While there seems to be a general consensus that tunnels in rock perform adequately during earthquake events, the seismic performance of shallow tunnels in soils is less certain. More experimenta...

Full description

Saved in:
Bibliographic Details
Published in:SOILS AND FOUNDATIONS 2011, Vol.51(3), pp.449-457
Main Authors: Cilingir, Ulas, Madabhushi, S.P. Gopal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Response of tunnels to earthquake induced loads is a complex dynamic soil-structure interaction problem. While there seems to be a general consensus that tunnels in rock perform adequately during earthquake events, the seismic performance of shallow tunnels in soils is less certain. More experimental and field data is needed to better understand the dynamic tunnel-soil interaction. In this paper, the behaviour of relatively shallow tunnels of square cross-section located in a sand deposit is investigated using dynamic centrifuge modelling and complimentary Finite Element analysis. Emphasis is given on the effect of tunnel axis depth on the seismic response of square tunnels. Dynamic centrifuge tests were carried out on model tunnels at different depths of embedment. Accelerations around the tunnel and earth pressures on the linings were measured. Tunnel deformations were also recorded using a fast digital camera. Particle Image Velocimetry (PIV) analyses were conducted to measure soil and lining deformations. Results show that for the cases investigated, the depth of the tunnel does not effect the deformation pattern of the tunnel significantly during an earthquake event; however it affects the amount of amplification of accelerations through the tunnel, the magnitude of dynamic earth pressures and the magnitude of the lining forces.
ISSN:0038-0806
1881-1418
DOI:10.3208/sandf.51.449