Removal of heavy metals from sewage sludge by extraction with organic acids

Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable tr...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 1999-07, Vol.40 (1), p.129-136
Main Authors: Veeken, A. H. M., Hamelers, H. V. M.
Format: Article
Language:eng
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable treatment because it recycles both nutrients and organic matter. However the high levels of heavy metals in sludge frequently prevent the reuse of sludge compost in agriculture. The extraction of heavy metals from the sludge before composting is therefore a necessary step to achieve a more sustainable sludge treatment. Extraction of heavy metals by inorganic acids and complexing agents has severe drawbacks. Organic acids could be an attractive extracting agent because the extraction can be performed at mildly acidic conditions (pH 3-5) and they are biologically degradable. The extraction was studied for heavy metals Cu and Zn and for competing metals Ca and Fe. The rate of extraction increases for increasing temperature and citric acid concentration. Cu can be extracted for 60-70% and Zn for 90-100% by citric acid at pH 3-4. A first economic valuation of the extraction and subsequent composting process showed that the total costs of the treatment process are below the costs of incineration.
ISSN:0273-1223
1996-9732