Loading…

Donor T Cell Infusions Limit Novel Immune Checkpoint Therapy in Pancreatic Cancer: Implications for Adoptive T Cell Therapy

Background: We have previously published that pancreatic cancers over-express an immunosuppressive peptide, vasoactive intestinal polypeptide (VIP), and that a novel combination of antin-PD1 antibodies and small molecule antagonists to the VIP receptor can induce complete remission of pancreatic duc...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2023-11, Vol.142 (Supplement 1), p.2144-2144
Main Authors: Hsu, Po-Chih, Waller, Edmund K., Passang, Tenzin, Wang, Shuhua, Li, Jian-Ming
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: We have previously published that pancreatic cancers over-express an immunosuppressive peptide, vasoactive intestinal polypeptide (VIP), and that a novel combination of antin-PD1 antibodies and small molecule antagonists to the VIP receptor can induce complete remission of pancreatic ductal adenocarcinoma (PDAC) in multiple mouse models (Ravibndranathan, Nat. Comm. 2022). To enhance the efficacy of this novel immunotherapy approach, we hypothesized that infusions of additional donor T cells to PDAC-bearing mice receiving the combination of anti-PD1/VIP receptor antagonists would lead to more intra-tumoral effector T cells and increased tumor regression rates. To investigate the potential impact of adoptive splenocyte infusion on checkpoint immunotherapy, we established sub-cutaneous KPC PDAC tumors in C57Bl/6 mice. As previously described, we treated them with a combination of ANT308 (VIP-receptor antagonists) and anti-PD1. We tested whether adding splenocyte infusions from donor mice that were immunologically naïve or donor mice previously engrafted with PDAC with regressed (positive control) or progressed tumors (negative control) would enhance the efficacy of the immune checkpoint blockade therapy. Methods: C57BL/6 B6 CD45.1 recipient mice were inoculated subcutaneously with 1 x 10 6 KPC-luc PDAC cell line cells on day -5. Recipient mice received anti-PD1 (200mg) every three days (totaling four doses) and 21 daily s.c. injections of 20 ug ANT308. Splenocytes from three groups of CD45.2+ C57BL/6 donor mice were injected into tumor-bearing recipients: naive mice, mice with a history of KPC regression post-ANT308/anti-PD1 treatment, and mice with progressed KPC tumors without any treatment. Anti-PD1 and ANT308 treatments were initiated simultaneously with adoptive splenocyte infusion (25 x 10 6 cells) on day 0. Tumor size was measured biweekly, and IVIS imaging was performed weekly. Blood was drawn weekly from recipient mice for flow cytometric analysis of immune cell subsets. A fraction of tumor-bearing recipient mice was euthanized ten days after donor splenocyte infusion and initiation of immune checkpoint therapy or at IAUCAC-defined endpoints. When tumor-bearing mice were euthanized, the spleen, lymph nodes, and tumors were harvested for further flow cytometric analysis. The remaining mice were monitored for tumor growth and survival kinetics. Results: Contrary to our original hypothesis, we observed substantially lower survival rates and
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-190645