Loading…

Spatial Transcriptomics Reveals Distinct Hematopoietic Stem Cell Niches in Mouse Fetal Liver

The hematopoietic stem cell (HSC) microenvironment, termed the niche, supports the proliferation, self-renewal, and differentiation abilities of HSCs. The definitive HSCs emerge from the hemogenic endothelium in the aorta-gonad-mesonephros (AGM) region after E10.5, and then migrate to the fetal live...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2023-11, Vol.142 (Supplement 1), p.2700-2700
Main Authors: Dong, Ruochen, Li, Hua, He, Xi, Perera, Anoja, Malloy, Seth, Russell, Jonathon, Li, Wenting, Petentler, Kaitlyn, Mao, Xinjian, Yang, Zhe, Epp, Michael, Hall, Kate, Scott, Allison, Smith, Sarah, Hembree, Mark, Wang, Yongfu, McKinney, Sean, Haug, Jeff, Unruh, Jay, Slaughter, Brian, Li, Linheng
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hematopoietic stem cell (HSC) microenvironment, termed the niche, supports the proliferation, self-renewal, and differentiation abilities of HSCs. The definitive HSCs emerge from the hemogenic endothelium in the aorta-gonad-mesonephros (AGM) region after E10.5, and then migrate to the fetal liver (FL) after E12.5 for expansion. After E18.5, HSCs migrate to the bone marrow where they reside for the postnatal stage and adulthood. Because the fetal liver is thought to be a harbor for the rapid expansion of HSCs, numerous studies have focused on the FL-HSC niche in the search for novel niche factors and niche cells that support HSC expansion. However, to our knowledge thus far, there have been no successes in translating the niche factors to a clinical application for the expansion of HSCs ex vivo. In this study, we use cutting-edge spatial transcriptomics to comprehensively investigate the transcriptomics and interactions between HSCs and the niche cells in the fetal liver. As a result, we have uncovered two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche. To understand the spatial distribution and interactions between FL-HSCs and niche cells, we introduced 2 spatial transcriptomic methods, Slide-seq (10uM resolution), and 10x Genomics Visium (55uM resolution), in our study on E14.5 and E16.5 mouse fetal liver. By integrating with single-cell RNA sequencing, we discovered the spatial transcriptomics of HSCs and potential niche cells, including hepatoblasts, endothelial cells, macrophages, megakaryocytes, and mesenchymal stromal cells (MSCs) in E14.5 and E16.5 mouse fetal liver. Interestingly, we found that MSCs and hepatoblasts were characterized by enriched N-cadherin expression. Both slide-seq and 10x Visium showed that the N-cadherin-expressing MSCs are enriched in the portal vessel area. Importantly, the majority of FL-HSCs are in close proximity to N-cadherin-expressing MSCs and endothelial cells, compared with other potential niche cells, indicating a supportive role of N-cadherin-expressing MSCs and endothelial cells in HSC maintenance. Subsequent CellPhoneDB (CPDB) analysis demonstrated that the N-cadherin-expressing MSCs are major niche-signaling senders with an enriched expression of niche factors and stemness pathway-related ligands. This finding is consistent with our previous finding that N-cadherin-expressing MSCs can maintain reserve HSCs in the adult bone marrow. To investigate the potential role of N-cadherin-expres
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-189880