Loading…

Simulation study on shear resistance of new cold-formed-steel-framed shear walls sheathed with steel sheet and gypsum boards

The objective of this article is to present finite element modelling protocols and validation studies for the new cold-formed-steel-framed shear walls sheathed with steel sheet and gypsum boards. In this model, the nonlinear behaviours of the tapping screw connectors are represented by employing the...

Full description

Saved in:
Bibliographic Details
Published in:Advances in structural engineering 2020-07, Vol.23 (9), p.1800-1812
Main Authors: Feng, Ruo-Qiang, Cai, Qi, Ma, Ying, Liu, Shen, Yan, Gui-Rong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this article is to present finite element modelling protocols and validation studies for the new cold-formed-steel-framed shear walls sheathed with steel sheet and gypsum boards. In this model, the nonlinear behaviours of the tapping screw connectors are represented by employing the ‘Pinching4’ material along with ‘zeroLength’ elements. The constitutive relationship parameters of the ‘Pinching4’ material were determined based on experimental data from the self-tapping screw connector shear test performed by the authors. The proposed procedure is implemented to generate the analytical specimens of seven full-scale cold-formed steel shear walls in the OpenSees platform. The load–deformation relationships, hysteresis curves and skeleton curves are compared with the test results performed by the authors. The results show that the finite element models can accurately simulate the shear characteristics of the new cold-formed steel shear walls. Finally, the effects of steel sheet thickness, stud thickness, sheathed material and height-to-width ratio of walls on the shear resistance were investigated.
ISSN:1369-4332
2048-4011
DOI:10.1177/1369433219900681