Loading…

Progressive damage analysis of adhesively bonded patch repaired carbon fibre–reinforced polymer specimen under compression involving cohesive zone model

In this paper, the in-plane compression behaviour of open-hole carbon fibre composite specimens adhesively bonded with the external carbon fibre composite patches on the single- and double side are studied. Uniaxial compression tests are conducted on MTS machine using ASTM anti-buckling fixture. A 3...

Full description

Saved in:
Bibliographic Details
Published in:International journal of damage mechanics 2019-11, Vol.28 (10), p.1457-1489
Main Authors: Matta, Seshadri, Kolanu, Naresh Reddy, Chinthapenta, Viswanath, Manjunatha, C M, Ramji, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the in-plane compression behaviour of open-hole carbon fibre composite specimens adhesively bonded with the external carbon fibre composite patches on the single- and double side are studied. Uniaxial compression tests are conducted on MTS machine using ASTM anti-buckling fixture. A 3D progressive damage model is developed to predict the damage initiation and failure in both unrepaired open cutout and repaired carbon fibre composite specimens under compressive load. Stress-based 3D-Hashin's failure criteria are used for predicting the fibre and matrix damage in carbon fibre composite. The cohesive zone model element is used for modelling the interlaminar delamination in carbon fibre composite specimen and also the adhesive layer between patch and specimen. Initial stiffness, damage initiation load and ultimate load of the specimen are obtained using progressive damage model based on finite element analysis, and they are compared against the experimental values. The load–deflection curve and the damage progression obtained from finite element analysis using progressive damage model is found to be in good coherence with the experimental predictions. In case of patch bonded carbon fibre composite specimens, failure mechanism starts with partial patch debonding followed by complete specimen failure.
ISSN:1056-7895
1530-7921
DOI:10.1177/1056789519832062