Loading…

Effect of powder metallurgy Cu-B 4 C electrodes on workpiece surface characteristics and machining performance of electric discharge machining

The main aim of this study is to produce new powder metallurgy (PM) Cu-B 4 C composite electrode (PM/(Cu-B 4 C)) capable of alloying the recast workpiece surface layer during electric discharge machining process with boron and other hard intermetallic phases, which eventually yield high hardness and...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2016-12, Vol.230 (12), p.2190-2203
Main Authors: Cogun, Can, Esen, Ziya, Genc, Asim, Cogun, Ferah, Akturk, Nizami
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main aim of this study is to produce new powder metallurgy (PM) Cu-B 4 C composite electrode (PM/(Cu-B 4 C)) capable of alloying the recast workpiece surface layer during electric discharge machining process with boron and other hard intermetallic phases, which eventually yield high hardness and abrasive wear resistance. The surface characteristics of the workpiece machined with a PM/(Cu-B 4 C) electrode consisted of 20 wt% B 4 C powders were compared with those of solid electrolytic copper (E/Cu) and powder metallurgy pure copper (PM/Cu) electrodes. The workpiece surface hardness, surface abrasive wear resistance, depth of the alloyed surface layer and composition of alloyed layers were used as key parameters in the comparison. The workpiece materials, which were machined with PM/(Cu-B 4 C) electrodes, exhibited significantly higher hardness and abrasive wear resistance than those of machined with the E/Cu and PM/Cu. The main reason was the presence of hard intermetallic phases, such as FeB, B 4 C (formed due to the boron in the electrode) and Fe 3 C in the surface layer. The improvement of the surface hardness achieved for steel workpiece when using PM/(Cu-B 4 C) electrodes was significantly higher than that reported in the literature. Moreover, the machining performance outputs (workpiece material removal rate, electrode wear rate and workpiece average surface roughness (R a )) of the electrodes were also considered in this study.
ISSN:0954-4054
2041-2975
DOI:10.1177/0954405415593049