Loading…

Design of invariant control system for longitudinal motion of flight vehicle

Consideration was given to the problem of control of the longitudinal motion of the amphibious aeroplane descending with prescribed velocity, altitude, and pitch angle under incomplete measurements and exogenous disturbances. Decomposition methods of designing the system for tracking the output vari...

Full description

Saved in:
Bibliographic Details
Published in:Automation and remote control 2011-10, Vol.72 (10), p.2100-2111
Main Authors: Krasnova, S. A., Mysik, N. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Consideration was given to the problem of control of the longitudinal motion of the amphibious aeroplane descending with prescribed velocity, altitude, and pitch angle under incomplete measurements and exogenous disturbances. Decomposition methods of designing the system for tracking the output variables with stabilization of the tracking errors invariantly in asymptotics to the exogenous disturbances were developed within the framework of the block approach. The problem of acquiring current information about the unmeasurable internal and exogenous variables was solved comprehensively using the state observers in sliding modes which are constructed on the basis of the control plant model with closed local bonds represented in terms of the tracking errors. Realization of this approach does without a detailed dynamic control plant model and its extension by the autonomous dynamic models of the exogenous actions, which simplifies substantially the controller structure.
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117911100092