Loading…

Mechanisms of shear thickening in transient guar network

The shear-thickening behavior of reversibly cross-linked guar network is studied using rheological and particle imaging velocity measurements. New evidence suggests that both shear-induced increase in crosslink density and non-Gaussian chain stretching are possible mechanisms for shear thickening. W...

Full description

Saved in:
Bibliographic Details
Published in:Journal of rheology (New York : 1978) 2014-11, Vol.58 (6), p.1789-1807
Main Author: Thomas Hu, Y.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The shear-thickening behavior of reversibly cross-linked guar network is studied using rheological and particle imaging velocity measurements. New evidence suggests that both shear-induced increase in crosslink density and non-Gaussian chain stretching are possible mechanisms for shear thickening. Which mechanism plays a predominant role depends on the applied shear rate γ̇a  and shear time. At γ̇a not too much larger than 1/τ, where τ is the network relaxation time, shear thickening is mainly caused by the increase in crosslink density. At higher shear rates, shear thickening is initiated by the increase in chain density at short times, and non-Gaussian chain stretching occurs at longer times. It is demonstrated that the linear elastic modulus measured for the shear-thickening state and its relaxation time can be used to discriminate between non-Gaussian chain stretching and shear-induced crosslinking mechanisms. The detection of a linear step strain regime where the measured modulus does not change with the strain amplitude indicates the absence of non-Gaussian chain stretch. When chains are stretched into the non-Gaussian regime, the relaxation time becomes smaller whereas relaxation time remains unchanged if only crosslink density increases. At high shear rates, flow may become unstable with bulk fracture, shear banding, and continuous flow occurring randomly as revealed by the velocity profile across the flow cell gap.
ISSN:0148-6055
1520-8516
DOI:10.1122/1.4892426