Loading…

The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology

This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier–Stokes equations with k–ε turbulence modeling (and low Reynolds number damping terms) are sol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of turbomachinery 1992-07, Vol.114 (3), p.528-537
Main Author: Dawes, W. N
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier–Stokes equations with k–ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.
ISSN:0889-504X
1528-8900
DOI:10.1115/1.2929176