Loading…

Efficient Equilibrium Testing Under Adhesion and Anisotropy Using Empirical Contact Force Models

This paper presents a method for efficiently testing the stability of an object under contact that accommodates empirical models of admissible forces at individual contact points. It handles a diverse range of possible geometries of the admissible force volume, including anisotropy, adhesion, and ev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics 2018-10, Vol.34 (5), p.1157-1169
Main Authors: Hauser, Kris, Wang, Shiquan, Cutkosky, Mark R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method for efficiently testing the stability of an object under contact that accommodates empirical models of admissible forces at individual contact points. It handles a diverse range of possible geometries of the admissible force volume, including anisotropy, adhesion, and even nonconvexity. The method discretizes the contact region into patches, performs a convex decomposition of a polyhedral approximation to each admissible force volume, and then formulates the problem as a mixed integer linear program. The model can also accommodate articulated robot hands with torque limits and joint frictions. Predictions of our method are evaluated experimentally in object lifting tasks using a gripper that exploits microspines to exert strongly anisotropic forces. The method is applied to calculate gripper loading capabilities and equilibrium predictions for a quadruped climbing robot on steep and overhanging terrain.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2018.2831722