Loading…

Multifrequency and Multiload MCR-WPT System Using Hybrid Modulation Waves SPWM Control Method

To satisfy independent and controllable power supply requirements for loads with different frequencies and power levels, a multifrequency and multiload (MFML) magnetic coupling resonant wireless power transfer (MCR-WPT) system using hybrid modulation waves sinusoidal pulsewidth modulation (HMW-SPWM)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2021-11, Vol.36 (11), p.12400-12412
Main Authors: Xia, Chenyang, Wei, Nan, Zhang, Hongtai, Zhao, Shuze, Li, Zhuang, Liao, Zhijuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To satisfy independent and controllable power supply requirements for loads with different frequencies and power levels, a multifrequency and multiload (MFML) magnetic coupling resonant wireless power transfer (MCR-WPT) system using hybrid modulation waves sinusoidal pulsewidth modulation (HMW-SPWM) control method is proposed in this article. Based on SPWM, loading a hybrid modulation wave formed by superimposing multifrequency modulation waves to drive the inverter, so the multifrequency hybrid current on the primary side can be obtained. According to the principle of mutual inductance coupling, inductive power with different frequencies is obtained and then separated by multiresonant networks on the secondary side for loads with different frequencies. First, the structure and working principle of a MFML MCR-WPT system controlled by HMW-SPWM are introduced. Then, taking a dual-frequency and dual-load MCR-WPT system as an example, the system is mathematically modeled. Besides, parameters design criteria for reducing interfrequency interference is studied. After that, load characteristics and power factor are analyzed to select appropriate parameters. Furthermore, dynamic characteristics are analyzed. Finally, theoretical results are validated by experiments. The experimental results show that the MFML MCR-WPT system controlled by HMW-SPWM realizes independent and controllable wireless power supply for loads with different frequencies and power levels.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2021.3079229