Loading…

Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity

This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2017-01, Vol.64 (1), p.527-534
Main Authors: Precup, Radu-Emil, David, Radu-Codrut, Petriu, Emil M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturation, and dead-zone static nonlinearity. The sensitivity analysis employs output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The GWO algorithm is used in solving the optimization problems, where the objective functions include the output sensitivity functions. GWO's motivation is based on its low-computational cost. The tuning approach is validated in an experimental case study of a position control for a laboratory nonlinear servo system, and TSK PI-FCs with a reduced process small time constant sensitivity are offered.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2016.2607698