Loading…

Flexible Thin-Film Tandem Solar Cells With >30% Efficiency

Alta Devices, Inc. has previously reported on single-junction thin-film GaAs photovoltaic devices on flexible substrates with efficiencies up to 28.8% under AM1.5G solar illumination at 1-sun intensity. Here, we show that the same technology platform can be extended to tandem devices that are capabl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2014-03, Vol.4 (2), p.729-733
Main Authors: Kayes, Brendan M., Ling Zhang, Twist, Rose, I-Kang Ding, Higashi, Gregg S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alta Devices, Inc. has previously reported on single-junction thin-film GaAs photovoltaic devices on flexible substrates with efficiencies up to 28.8% under AM1.5G solar illumination at 1-sun intensity. Here, we show that the same technology platform can be extended to tandem devices that are capable of even higher efficiencies: so far up to 30.8%. Specifically, here, we report on a lattice-matched, series-connected, two-junction device with InGaP as the light-absorbing material of the top cell and GaAs as the absorber in the bottom cell. The material is grown by metallorganic chemical vapor deposition, and then, the device is lifted off by the epitaxial liftoff (ELO) process, as previously reported. This demonstrates that ELO is not only capable of record-setting single-junction performance but capable of achieving world-class efficiency with a multijunction architecture as well.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2014.2299395