Loading…

Wavelet image coding using trellis coded space-frequency quantization

The progress in wavelet image coding have brought the field into its maturity. Major developments in the process are rate-distortion (R-D) based wavelet packet transformation, zerotree quantization, subband classification and trellis-coded quantization, and sophisticated context modeling in entropy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 1999-07, Vol.6 (7), p.158-161
Main Authors: Xiong, Zixiang, Wu, Xiaolin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The progress in wavelet image coding have brought the field into its maturity. Major developments in the process are rate-distortion (R-D) based wavelet packet transformation, zerotree quantization, subband classification and trellis-coded quantization, and sophisticated context modeling in entropy coding. Drawing from past experience and recent in sights, we propose a new wavelet image coding technique with trellis coded space-frequency quantization (TCSFQ). TCSFQ aims to explore space-frequency characterizations of wavelet image representations via R-D optimized zerotree pruning, trellis-coded quantization, and context modeling in entropy coding. Experiments indicate that the TCSFQ coder achieves twice as much compression as the baseline JPEG coder does at the same peak signal to noise ratio (PSNR), making it better than all other coders described in the literature.
ISSN:1070-9908
1558-2361
DOI:10.1109/97.769357