Loading…

Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives

A sliding-mode observer is applied toward the operation of a switched reluctance motor (SRM) drive. The sliding-mode observer estimates rotor position and velocity to control the conduction angles of the machine. Conventional on-off control with hysteresis current control is included with the positi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2001-01, Vol.37 (1), p.51-58
Main Authors: McCann, R.A., Islam, M.S., Husain, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A sliding-mode observer is applied toward the operation of a switched reluctance motor (SRM) drive. The sliding-mode observer estimates rotor position and velocity to control the conduction angles of the machine. Conventional on-off control with hysteresis current control is included with the position estimation scheme. The particular case of an automotive brake system motor is considered in detail where the conduction angles are modified with velocity feedback to provide optimum time response to brake system commands. Nonlinear modeling of a SRM is described and a computer simulation is developed based on data from an experimental SRM system. The sliding-mode observer is implemented with fixed-point and floating-point digital signal processors (DSPs) and the discrete-time implementations first examined under locked-rotor conditions. A comparison is also made between the implementation in two different types of DSPs. After confirming the accuracy of the computer simulation with experimental data, the design considerations in selecting observer coefficients with regard to sampling time, convergence rate, and transient stability are discussed. In conclusion, the effects of flux estimation errors on the system time response during a startup transient are examined.
ISSN:0093-9994
1939-9367
DOI:10.1109/28.903126