Loading…

Active particles with fractional rotational Brownian motion

We study the two-dimensional overdamped motion of an active particle whose orientational dynamics is subject to fractional Brownian noise, whereas its position is affected by self-propulsion and Brownian fluctuations. From a Langevin-like model of active motion with constant swimming speed, we deriv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical mechanics 2020-06, Vol.2020 (6), p.63213
Main Authors: Gomez-Solano, Juan Ruben, Sevilla, Francisco J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the two-dimensional overdamped motion of an active particle whose orientational dynamics is subject to fractional Brownian noise, whereas its position is affected by self-propulsion and Brownian fluctuations. From a Langevin-like model of active motion with constant swimming speed, we derive the corresponding Fokker-Planck equation, from which we find the angular probability density of the particle orientation for arbitrary values of the Hurst exponent that characterizes the fractional rotational noise. We provide analytical expressions for the velocity autocorrelation function and the translational mean-squared displacement, which show that active diffusion effectively emerges in the long-time limit for all values of the Hurst exponent. The corresponding expressions for the active diffusion coefficient and the effective rotational diffusion time are also derived. Our results are compared with numerical simulations of active particles with rotational motion driven by fractional Brownian noise, with which we find an excellent agreement.
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/ab8553