Loading…

Effects of hydrogen isotope species on ITG microturbulence in LHD

Abstract The linear and nonlinear effects of hydrogen isotope species on ion temperature gradient mode (ITG) in the Large Helical Device (LHD) stellarator are studied using radially global gyrokinetic simulation. We found that the coupling range of linear toroidal harmonics depends on the ion mass o...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2024-06, Vol.66 (8)
Main Authors: Qin, Y Q, Chen, Y C, Sun, G Y, Nicolau, J, Lin, Z
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The linear and nonlinear effects of hydrogen isotope species on ion temperature gradient mode (ITG) in the Large Helical Device (LHD) stellarator are studied using radially global gyrokinetic simulation. We found that the coupling range of linear toroidal harmonics depends on the ion mass of the hydrogen isotope. The growth rate profiles of ITG mode are almost the same for H, D, and T plasmas, indicating a gyro-Bohm scaling of ion-mass dependence. The nonlinear electrostatic simulations show that the zonal flow breaks the radially elongated eigenmode structures and reduces the size of the turbulence eddies, which suppresses the turbulence and the ion heat transport in the LHD. The turbulence amplitude without the zonal flow is almost the same for H, D, and T plasmas, while it decreases with increasing the ion mass of the hydrogen isotope when the zonal flow is present. The reduction of the turbulent transport with larger ion mass is mostly due to the enhancement of zonal fows by larger ion mass. The ion heat conductivity deviates from the gyro-Bohm scaling for both cases with and without the zonal flow.
ISSN:0741-3335
1361-6587
DOI:10.1088/1361-6587/ad15f0