Loading…

Analysis of Internal Osmolality in Developing Coral Larvae,Fungia scutaria

Coral species throughout the world are facing severe local and global environmental pressures. Because of the pressing conservation need, we are studying the reproduction, physiology, and cryobiology of coral larvae with the future goal of cryopreserving and maintaining these organisms in a genome r...

Full description

Saved in:
Bibliographic Details
Published in:Physiological and biochemical zoology 2010-01, Vol.83 (1), p.157-166
Main Authors: Hagedorn, Mary, Carter, Virginia L., Ly, Steven, Andrell, Raymond M., Yancey, Paul H., Leong, Jo‐Ann C., Kleinhans, Frederick W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coral species throughout the world are facing severe local and global environmental pressures. Because of the pressing conservation need, we are studying the reproduction, physiology, and cryobiology of coral larvae with the future goal of cryopreserving and maintaining these organisms in a genome resource bank. Effective cryopreservation involves several steps, including the loading and unloading of cells with cryoprotectant and the avoidance of osmotic shock. In this study, during the time course of coral larvae development of the mushroom coralFungia scutaria, we examined several physiologic factors, including internal osmolality, percent osmotically active water, formation of mucus cells, and intracellular organic osmolytes. The osmotically inactive components of the cell,V b, declined 33% during development from the oocyte to day 5. In contrast, measurements of the internal osmolality of coral larvae indicated that the internal osmolality was increasing from day 1 to day 5, probably as a result of the development of mucus cells that bind ions. Because of this, we conclude that coral larvae are osmoconformers with an internal osmolality of about 1,000 mOsm. Glycine betaine, comprising more than 90% of the organic osmolytes, was found to be the major organic osmolyte in the larvae. Glycerol was found in only small quantities in larvae that had been infected with zooxanthellae, suggesting that this solute did not play a significant role in the osmotic balance of this larval coral. We were interested in changes in cellular characteristics and osmolytes that might suggest solutes to test as cryoprotectants in order to assist in the successful cryopreservation of the larvae. More importantly, these data begin to reveal the basic physiological events that underlie the move from autonomous living to symbiosis.
ISSN:1522-2152
1537-5293
DOI:10.1086/648484