Loading…

Hydro-geomorphic assessment of erosion intensity and sediment yield initiated debris-flow hazards at Wadi Dahab Watershed, Egypt

This study attempts to assess slope and channel erosion for modelling their implications on debris-flow occurrences in Wadi Dahab Watershed (WDW). Remote sensing and Geographic Information System (GIS) were integrated to appraise erosion rates from a hillslope and channel storage throughout WDW. A m...

Full description

Saved in:
Bibliographic Details
Published in:Georisk 2021-07, Vol.15 (3), p.221-246
Main Authors: Abuzied, Sara M., Pradhan, Biswajeet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study attempts to assess slope and channel erosion for modelling their implications on debris-flow occurrences in Wadi Dahab Watershed (WDW). Remote sensing and Geographic Information System (GIS) were integrated to appraise erosion rates from a hillslope and channel storage throughout WDW. A mass-wasting database was built initially for modelling hazard zones and validating the final map using a bivariate statistical analysis. An Erosion Hazard Model (EHM) was developed to evaluate the erosion intensity and sediment yield throughout WDW and to prognosticate the hazard zones due to debris-flows. The EHM was developed based on hydrological and geomorphic controls which are responsible for disintegrating bedrocks, delivering detritus downslopes, and accelerating debris through channels. Multi-source datasets, including topographic and geologic maps, climatic, satellite images, aerial photographs, and field-based datasets, were used to derive factors associated with the hydro-geomorphic processes. A spatial prediction of erosion intensity was obtained by the integration of both static and dynamic factors generated hazards in GIS platform. The erosion intensity map classifies WDW relatively to five intensity zones in which the most hazardous zones are distributed in steep sloping terrains and structurally controlled channels covered by metamorphic and clastic rocks. The erosion intensity map was correlated and tested against the debris-flows dataset which was not used during the spatial modelling process. The statistical correlation analysis has confirmed that the debris-flow locations increase exponentially in the high erosion intensity zones. The holistic integration approach provides the promising model for forecasting critical zones prone to erosion intensity and their associated hazards in WDW.
ISSN:1749-9518
1749-9526
DOI:10.1080/17499518.2020.1753781