Loading…

Model-Simulated Atmospheric Carbon Dioxide: Comparisons with Satellite Retrievals and Ground-Based Observations

Atmospheric CO2 concentrations from January 2010 to December 2010 were simulated using the GEOS-Chem(Goddard Earth Observing System-Chemistry) model and the results were compared to satellite Gases Observing Satellite(GOSAT) and ground-based the Total Carbon Column Observing Network(TCCON) data. It...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao 2014, Vol.7 (6), p.481-486
Main Author: WANG Jiang-Nan TIAN Xiang-Jun FU Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atmospheric CO2 concentrations from January 2010 to December 2010 were simulated using the GEOS-Chem(Goddard Earth Observing System-Chemistry) model and the results were compared to satellite Gases Observing Satellite(GOSAT) and ground-based the Total Carbon Column Observing Network(TCCON) data. It was found that CO2 concentrations based on GOSAT satellite retrievals were generally higher than those simulated by GEOS-Chem. The differences over the land area in January and April ranged from 1 to 2 ppm, and there were major differences in June and August. At high latitudes in the Northern Hemisphere in June, as well as south of the Sahara, the difference was greater than 5 ppm. In the high latitudes of the Northern Hemisphere the model results were higher than the GOSAT retrievals, while in South America the satellite data were higher. The trend of the difference in the high latitudes of the Northern Hemisphere and the Saharan region in August was opposite to June. Maximum correlation coefficients were found in April, reaching 0.72, but were smaller in June and August. In January, the correlation coefficient was only 0.36. The comparisons between GEOS-Chem data and TCCON observations showed better results than the comparison between GEOS and GOSAT. The correlation coefficients ranged between 0.42(Darwin) and 0.92(Izana). Analysis of the results indicated that the inconsistency between satellite observations and model simulations depended on inversion errors caused by data inaccuracies of the model simulation's inputs, as well as the mismatch of satellite retrieval model input parameters.
ISSN:1674-2834
2376-6123
DOI:10.1080/16742834.2014.11447211