Loading…

Nanoparticles integrating natural and synthetic polymers for in vivo insulin delivery

The aims of the current study were to develop insulin-loaded nanoparticles comprised of various polymers at different compositions, and to evaluate their ability to lower blood glucose levels in diabetic rats following subcutaneous and oral administrations. Several combinations of natural and synthe...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical development and technology 2021-01, Vol.26 (1), p.30-40
Main Authors: Hadiya, Safy, Radwan, Radwa, Zakaria, Menna, El-Sherif, Tahra, Hamad, Mostafa A., Elsabahy, Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aims of the current study were to develop insulin-loaded nanoparticles comprised of various polymers at different compositions, and to evaluate their ability to lower blood glucose levels in diabetic rats following subcutaneous and oral administrations. Several combinations of natural and synthetic polymers have been utilized for preparation of nanoparticles including, chitosan, alginate, albumin and Pluronic. Nanosized (170 nm-800 nm) spherical particles of high encapsulation efficiency (15-52%) have been prepared. Composition and ratios between the integrated polymers played a pivotal role in determining size, zeta potential, and in vivo hypoglycemic activity of particles. After subcutaneous and oral administration in diabetic rats, some of the insulin-loaded nanoparticles were able to induce much higher hypoglycemic effect as compared to the unloaded free insulin. For instance, subcutaneous injection of nanoparticles comprised of chitosan combined with sodium tripolyphosphate, Pluronic or alginate/calcium chloride, resulted in comparable hypoglycemic effects to free insulin, at two-fold lower dose. Nanoparticles were well-tolerated after oral administration in rats, as evidenced by by measuring levels of alanine aminotransferase, aspartate aminotransferases, albumin, creatinine and urea. This study indicates that characteristics and delivery efficiency of nanomaterials can be controlled via utilizing several natural/synthetic polymers and by fine-tuning of combination ratio between polymers.
ISSN:1083-7450
1097-9867
DOI:10.1080/10837450.2020.1832117