Loading…

Cyanobacterial conversion of carbon dioxide to 2,3-butanediol

Conversion of CO₂ for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (4), p.1249-1254
Main Authors: Oliver, John W. K., Machado, Iara M. P., Yoneda, Hisanari, Atsumi, Shota
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3
cites cdi_FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3
container_end_page 1254
container_issue 4
container_start_page 1249
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Oliver, John W. K.
Machado, Iara M. P.
Yoneda, Hisanari
Atsumi, Shota
description Conversion of CO₂ for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically developed the 2,3-butanediol (23BD) biosynthetic pathway in Synechococcus elongatus PCC7942 as a model system to establish design methods for efficient exogenous chemical production in cyanobacteria. We identified 23BD as a target chemical with low host toxicity, and designed an oxygen-insensitive, cofactor-matched biosynthetic pathway coupled with irreversible enzymatic steps to create a driving force toward the target. Production of 23BD from CO₂ reached 2.38 g/L, which is a significant increase for chemical production from exogenous pathways in cyanobacteria. This work demonstrates that developing strong design methods can continue to increase chemical production in cyanobacteria.
doi_str_mv 10.1073/pnas.1213024110
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1213024110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41991759</jstor_id><sourcerecordid>41991759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3</originalsourceid><addsrcrecordid>eNpdkUlLxDAYhoMoOi5nT0rBiwer-bJMkoOCDG4geNFzSNJUO3SaMWlF_70ZRsfllO35HvLyIrQP-BSwoGfzzqRTIEAxYQB4DY0AKyjHTOF1NMKYiFIywrbQdkpTjLHiEm-iLUKJEoTwETqffJguWON6HxvTFi50bz6mJnRFqAtnos27qgnvTeWLPhTkhJZ26E3n82W7izZq0ya_97XuoKfrq8fJbXn_cHM3ubwvHaekLw0wAeCopbWvuaWGKkrGyhlh61qysXO191VlPRg7zllAynxSFSUcpJeG7qCLpXc-2JmvnO_6aFo9j83MxA8dTKP_vnTNi34Ob5pyLrAiWXD8JYjhdfCp17MmOd-2OUgYkgYiqATCMc7o0T90GobY5XgLSkhOgfFMnS0pF0NK0derzwDWi2r0ohr9U02eOPydYcV_d_ELWEyudNnHsoepDBwsgWnqQ1wRDJQCwRX9BFGXniU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1277853145</pqid></control><display><type>article</type><title>Cyanobacterial conversion of carbon dioxide to 2,3-butanediol</title><source>PubMed Central</source><source>JSTOR</source><creator>Oliver, John W. K. ; Machado, Iara M. P. ; Yoneda, Hisanari ; Atsumi, Shota</creator><creatorcontrib>Oliver, John W. K. ; Machado, Iara M. P. ; Yoneda, Hisanari ; Atsumi, Shota</creatorcontrib><description>Conversion of CO₂ for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically developed the 2,3-butanediol (23BD) biosynthetic pathway in Synechococcus elongatus PCC7942 as a model system to establish design methods for efficient exogenous chemical production in cyanobacteria. We identified 23BD as a target chemical with low host toxicity, and designed an oxygen-insensitive, cofactor-matched biosynthetic pathway coupled with irreversible enzymatic steps to create a driving force toward the target. Production of 23BD from CO₂ reached 2.38 g/L, which is a significant increase for chemical production from exogenous pathways in cyanobacteria. This work demonstrates that developing strong design methods can continue to increase chemical production in cyanobacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1213024110</identifier><identifier>PMID: 23297225</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetoin - metabolism ; Acetolactate Synthase - genetics ; Acetolactate Synthase - metabolism ; Alcohol Dehydrogenase - genetics ; Alcohol Dehydrogenase - metabolism ; Bacteria ; Biochemical pathways ; Biochemistry ; Biodiesel fuels ; Biofuels ; Biological production ; Biological Sciences ; Biosynthesis ; Biosynthetic Pathways ; Butylene Glycols - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carboxy-Lyases - genetics ; Carboxy-Lyases - metabolism ; Chemical hazards ; Chemical products ; Chemicals ; Cyanobacteria ; Enzymes ; Genetic engineering ; Metabolic Engineering ; Models, Biological ; Photosynthesis ; Plasmids - genetics ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Renewable Energy ; Synechococcus - enzymology ; Synechococcus - genetics ; Synechococcus - metabolism ; Synthetic Biology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (4), p.1249-1254</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 22, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3</citedby><cites>FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41991759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41991759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23297225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, John W. K.</creatorcontrib><creatorcontrib>Machado, Iara M. P.</creatorcontrib><creatorcontrib>Yoneda, Hisanari</creatorcontrib><creatorcontrib>Atsumi, Shota</creatorcontrib><title>Cyanobacterial conversion of carbon dioxide to 2,3-butanediol</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Conversion of CO₂ for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically developed the 2,3-butanediol (23BD) biosynthetic pathway in Synechococcus elongatus PCC7942 as a model system to establish design methods for efficient exogenous chemical production in cyanobacteria. We identified 23BD as a target chemical with low host toxicity, and designed an oxygen-insensitive, cofactor-matched biosynthetic pathway coupled with irreversible enzymatic steps to create a driving force toward the target. Production of 23BD from CO₂ reached 2.38 g/L, which is a significant increase for chemical production from exogenous pathways in cyanobacteria. This work demonstrates that developing strong design methods can continue to increase chemical production in cyanobacteria.</description><subject>Acetoin - metabolism</subject><subject>Acetolactate Synthase - genetics</subject><subject>Acetolactate Synthase - metabolism</subject><subject>Alcohol Dehydrogenase - genetics</subject><subject>Alcohol Dehydrogenase - metabolism</subject><subject>Bacteria</subject><subject>Biochemical pathways</subject><subject>Biochemistry</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biological production</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Butylene Glycols - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carboxy-Lyases - genetics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Chemical hazards</subject><subject>Chemical products</subject><subject>Chemicals</subject><subject>Cyanobacteria</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Metabolic Engineering</subject><subject>Models, Biological</subject><subject>Photosynthesis</subject><subject>Plasmids - genetics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Renewable Energy</subject><subject>Synechococcus - enzymology</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>Synthetic Biology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkUlLxDAYhoMoOi5nT0rBiwer-bJMkoOCDG4geNFzSNJUO3SaMWlF_70ZRsfllO35HvLyIrQP-BSwoGfzzqRTIEAxYQB4DY0AKyjHTOF1NMKYiFIywrbQdkpTjLHiEm-iLUKJEoTwETqffJguWON6HxvTFi50bz6mJnRFqAtnos27qgnvTeWLPhTkhJZ26E3n82W7izZq0ya_97XuoKfrq8fJbXn_cHM3ubwvHaekLw0wAeCopbWvuaWGKkrGyhlh61qysXO191VlPRg7zllAynxSFSUcpJeG7qCLpXc-2JmvnO_6aFo9j83MxA8dTKP_vnTNi34Ob5pyLrAiWXD8JYjhdfCp17MmOd-2OUgYkgYiqATCMc7o0T90GobY5XgLSkhOgfFMnS0pF0NK0derzwDWi2r0ohr9U02eOPydYcV_d_ELWEyudNnHsoepDBwsgWnqQ1wRDJQCwRX9BFGXniU</recordid><startdate>20130122</startdate><enddate>20130122</enddate><creator>Oliver, John W. K.</creator><creator>Machado, Iara M. P.</creator><creator>Yoneda, Hisanari</creator><creator>Atsumi, Shota</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130122</creationdate><title>Cyanobacterial conversion of carbon dioxide to 2,3-butanediol</title><author>Oliver, John W. K. ; Machado, Iara M. P. ; Yoneda, Hisanari ; Atsumi, Shota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetoin - metabolism</topic><topic>Acetolactate Synthase - genetics</topic><topic>Acetolactate Synthase - metabolism</topic><topic>Alcohol Dehydrogenase - genetics</topic><topic>Alcohol Dehydrogenase - metabolism</topic><topic>Bacteria</topic><topic>Biochemical pathways</topic><topic>Biochemistry</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biological production</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Butylene Glycols - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carboxy-Lyases - genetics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Chemical hazards</topic><topic>Chemical products</topic><topic>Chemicals</topic><topic>Cyanobacteria</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Metabolic Engineering</topic><topic>Models, Biological</topic><topic>Photosynthesis</topic><topic>Plasmids - genetics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Renewable Energy</topic><topic>Synechococcus - enzymology</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, John W. K.</creatorcontrib><creatorcontrib>Machado, Iara M. P.</creatorcontrib><creatorcontrib>Yoneda, Hisanari</creatorcontrib><creatorcontrib>Atsumi, Shota</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, John W. K.</au><au>Machado, Iara M. P.</au><au>Yoneda, Hisanari</au><au>Atsumi, Shota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanobacterial conversion of carbon dioxide to 2,3-butanediol</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-01-22</date><risdate>2013</risdate><volume>110</volume><issue>4</issue><spage>1249</spage><epage>1254</epage><pages>1249-1254</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>1J.W.K.O. and I.M.P.M. contributed equally to this work.</notes><notes>Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved December 5, 2012 (received for review July 27, 2012)</notes><notes>Author contributions: J.W.K.O., I.M.P.M., and S.A. designed research; J.W.K.O., I.M.P.M., H.Y., and S.A. performed research; J.W.K.O., I.M.P.M., H.Y., and S.A. analyzed data; and J.W.K.O., I.M.P.M., and S.A. wrote the paper.</notes><abstract>Conversion of CO₂ for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically developed the 2,3-butanediol (23BD) biosynthetic pathway in Synechococcus elongatus PCC7942 as a model system to establish design methods for efficient exogenous chemical production in cyanobacteria. We identified 23BD as a target chemical with low host toxicity, and designed an oxygen-insensitive, cofactor-matched biosynthetic pathway coupled with irreversible enzymatic steps to create a driving force toward the target. Production of 23BD from CO₂ reached 2.38 g/L, which is a significant increase for chemical production from exogenous pathways in cyanobacteria. This work demonstrates that developing strong design methods can continue to increase chemical production in cyanobacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23297225</pmid><doi>10.1073/pnas.1213024110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (4), p.1249-1254
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1213024110
source PubMed Central; JSTOR
subjects Acetoin - metabolism
Acetolactate Synthase - genetics
Acetolactate Synthase - metabolism
Alcohol Dehydrogenase - genetics
Alcohol Dehydrogenase - metabolism
Bacteria
Biochemical pathways
Biochemistry
Biodiesel fuels
Biofuels
Biological production
Biological Sciences
Biosynthesis
Biosynthetic Pathways
Butylene Glycols - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Carboxy-Lyases - genetics
Carboxy-Lyases - metabolism
Chemical hazards
Chemical products
Chemicals
Cyanobacteria
Enzymes
Genetic engineering
Metabolic Engineering
Models, Biological
Photosynthesis
Plasmids - genetics
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Renewable Energy
Synechococcus - enzymology
Synechococcus - genetics
Synechococcus - metabolism
Synthetic Biology
title Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T00%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanobacterial%20conversion%20of%20carbon%20dioxide%20to%202,3-butanediol&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Oliver,%20John%20W.%20K.&rft.date=2013-01-22&rft.volume=110&rft.issue=4&rft.spage=1249&rft.epage=1254&rft.pages=1249-1254&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1213024110&rft_dat=%3Cjstor_cross%3E41991759%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-a14711c3b3fef5b3a393269ca7bff846ccfeeddbe1ab6130188ddb9d32518e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1277853145&rft_id=info:pmid/23297225&rft_jstor_id=41991759&rfr_iscdi=true