Loading…

Thermally activated hysteresis in high quality graphene/h-BN devices

We report on gate hysteresis of resistance in high quality graphene/hexagonal boron nitride (h-BN) devices. We observe a thermally activated hysteretic behavior in resistance as a function of the applied gate voltage at temperatures above 375 K. In order to investigate the origin of the hysteretic p...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-06, Vol.108 (23)
Main Authors: Cadore, A. R., Mania, E., Watanabe, K., Taniguchi, T., Lacerda, R. G., Campos, L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on gate hysteresis of resistance in high quality graphene/hexagonal boron nitride (h-BN) devices. We observe a thermally activated hysteretic behavior in resistance as a function of the applied gate voltage at temperatures above 375 K. In order to investigate the origin of the hysteretic phenomenon, we compare graphene/h-BN heterostructure devices with SiO2/Si back gate electrodes to devices with graphite back gate electrodes. The gate hysteretic behavior of the resistance is present only in devices with an h-BN/SiO2 interface and is dependent on the orientation of the applied gate electric field and sweep rate. We describe a phenomenological model which captures all of our findings based on charges trapped at the h-BN/SiO2 interface. Such hysteretic behavior in graphene resistance must be considered in high temperature applications for graphene devices and may open new routes for applications in digital electronics and memory devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4953162