Loading…

Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells

We study the emission of light from industrial multicrystalline silicon solar cells under forward and reverse biases. Camera-based luminescence imaging techniques and dark lock-in thermography are used to gain information about the spatial distribution and the energy dissipation at pre-breakdown sit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2009-11, Vol.106 (10), p.104510-104510-8
Main Authors: Bothe, K., Ramspeck, K., Hinken, D., Schinke, C., Schmidt, J., Herlufsen, S., Brendel, R., Bauer, J., Wagner, J.-M., Zakharov, N., Breitenstein, O.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the emission of light from industrial multicrystalline silicon solar cells under forward and reverse biases. Camera-based luminescence imaging techniques and dark lock-in thermography are used to gain information about the spatial distribution and the energy dissipation at pre-breakdown sites frequently found in multicrystalline silicon solar cells. The pre-breakdown occurs at specific sites and is associated with an increase in temperature and the emission of visible light under reverse bias. Moreover, additional light emission is found in some regions in the subband-gap range between 1400 and 1700 nm under forward bias. Investigations of multicrystalline silicon solar cells with different interstitial oxygen concentrations and with an electron microscopic analysis suggest that the local light emission in these areas is directly related to clusters of oxygen.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3256199