Loading…

Electroluminescent and transport mechanisms of n-ZnO∕p-Si heterojunctions

The distinct visible electroluminescence (EL) at room temperature has been realized based on n-ZnO∕p-Si heterojunction. The EL peak energy coincided well with the deep-level photoluminescence of ZnO, suggesting that the EL emission was originated from the radiative recombination via deep-level defec...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2006-05, Vol.88 (18)
Main Authors: Ye, J. D., Gu, S. L., Zhu, S. M., Liu, W., Liu, S. M., Zhang, R., Shi, Y., Zheng, Y. D.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The distinct visible electroluminescence (EL) at room temperature has been realized based on n-ZnO∕p-Si heterojunction. The EL peak energy coincided well with the deep-level photoluminescence of ZnO, suggesting that the EL emission was originated from the radiative recombination via deep-level defects in n-ZnO layers. The transport mechanisms of the diodes have been discussed with the characteristics of current-voltage (I-V) and light-output–voltage (L-V), in terms of the energy band diagram of ZnO∕Si heterojunction. The tunneling mechanism via deep-level states was the main conduction process at low forward bias, while space-charge-limited current conduction dominated the carrier transport at higher bias. Light-output–current (L-I) characteristic of the diode followed a power law such as L∼Im, which showed a superlinear behavior at low injection current and became almost linear due to the saturation of nonradiative recombination centers at high current level.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2201895