Loading…

Synthetic melanin thin films: Structural and electrical properties

Scanning probe microscopy was used to investigate the structural and electrical organization at the nanoscopic level of hydrated melanin thin films synthesized by oxidizing L-3-(3,4-dihydroxyphenyl)-alanine (L-dopa) in dimethyl sulfoxide. Atomic force microscopy (AFM) provided the morphologies of th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2004-11, Vol.96 (10), p.5803-5807
Main Authors: da Silva, M. I. N., Dezidério, S. N., Gonzalez, J. C., Graeff, C. F. O., Cotta, M. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scanning probe microscopy was used to investigate the structural and electrical organization at the nanoscopic level of hydrated melanin thin films synthesized by oxidizing L-3-(3,4-dihydroxyphenyl)-alanine (L-dopa) in dimethyl sulfoxide. Atomic force microscopy (AFM) provided the morphologies of the L-dopa melanin films. Electrostatic force microscopy and conductive-AFM were used to spatially resolve the electrical properties of the material. Using a simple parallel plate capacitor model a method to measure the charge distribution on the sample was developed. The correlations between topography, electric charge, and current images of the sample demonstrated that the hydration process produces a restructuring of melanin observed not only through topographic variations, but also through the creation of areas with different electrical properties.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1803629