Loading…

High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition

A multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates. We obtain reproducibly high electron mobilities from 115 up to 155 cm2/V s at 300 K in a narrow carrier concentration range f...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2003-06, Vol.82 (22), p.3901-3903
Main Authors: Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H.-C., Han, K.-H., Benndorf, G., Bundesmann, C., Hochmuth, H., Grundmann, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates. We obtain reproducibly high electron mobilities from 115 up to 155 cm2/V s at 300 K in a narrow carrier concentration range from 2 to 5×1016 cm−3. The key issue of the multistep PLD process is the insertion of 30-nm-thin ZnO relaxation layers deposited at reduced substrate temperature. The high-mobility samples show atomically flat surface structure with grain size of about 0.5–1 μm, whereas the surfaces of low-mobility films consist of clearly resolved hexagonally faceted columnar grains of only 200-nm size, as shown by atomic force microscopy. Structurally optimized PLD ZnO thin films show narrow high-resolution x-ray diffraction peak widths of the ZnO(0002) ω- and 2Θ-scans as low as 151 and 43 arcsec, respectively, and narrow photoluminescence linewidths of donor-bound excitons of 1.7 meV at 2 K.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1578694