Loading…

In situ study of void growth kinetics in electroplated Cu lines

An in situ electromigration apparatus was used to study the kinetics of void growth in unpassivated, electropolated copper damascene lines. Voids were observed to grow by consuming grains in a stepwise fashion, either by grain thinning or by an edge displacement mechanism. Surface diffusion was foun...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2002-08, Vol.92 (4), p.1803-1810
Main Authors: Liniger, E., Gignac, L., Hu, C.-K., Kaldor, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An in situ electromigration apparatus was used to study the kinetics of void growth in unpassivated, electropolated copper damascene lines. Voids were observed to grow by consuming grains in a stepwise fashion, either by grain thinning or by an edge displacement mechanism. Surface diffusion was found to be the primary diffusion path for void growth. In addition, grain boundaries provided a secondary path for copper diffusion in polycrystalline structures and nucleation sites for void growth in bamboo structures. Void growth rate was measured as a function of sample temperature and linewidth using a scanning electron microscope. An electromigration activation energy of 0.9±0.1 eV was determined for the copper voiding process. The effect of linewidth on void growth rate was also investigated and found to be negligible, consistent with a surface-diffusion dominated model for void growth. The in situ apparatus also made it possible to directly correlate changes in electrical resistance with physical changes taking place in the test structures.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1492871