Loading…

Effect of F co-implant during annealing of Be-implanted GaAs

F+ co-implantation at different doses and energies was performed into GaAs already implanted with Be+ at high dose (1015 cm−2) and low energy (20 keV), in order to reduce the beryllium diffusion during post-implant annealing. The redistribution behavior of Be and associated electrical effects were s...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1990-08, Vol.57 (6), p.569-571
Main Authors: HALLALI, P. E, BARATTE, H, CARDONE, F, NORCOTT, M, LEGOUES, F, SADANA, D. K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:F+ co-implantation at different doses and energies was performed into GaAs already implanted with Be+ at high dose (1015 cm−2) and low energy (20 keV), in order to reduce the beryllium diffusion during post-implant annealing. The redistribution behavior of Be and associated electrical effects were studied by secondary-ion mass spectrometry, transmission electron microscopy (TEM), Hall effect measurements, and current-voltage profiling. Be outdiffusion was reduced by co-implantation of F; more than 80% of the implanted Be was retained during rapid thermal annealing up to 850 °C. The dose and energy of the F implant strongly influenced Be electrical activation efficiency. High activation, up to 48.5%, was obtained when F was co-implanted at high dose (1015 cm−2) and low energy (10 keV). Hole profiles shown reduced electrical activation in the region where F and Be profiles overlapped and TEM studies indicated the formation of {111} coherent plates, possibly BeF2 precipitates, in the same region. The reduction of Be outdiffusion in F co-implanted samples led to high activation after annealing, and was believed to be due to chemical interaction between Be and F.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.103623