Loading…

Reducing the Impact of Perfusion Medical Waste on the Environment

The U.S. healthcare system generates more than five billion pounds of waste each year. Waste disposal has become a serious environmental problem facing healthcare institutions. The operating room is the second largest source of hospital waste, and no current standards exist regarding perfusion waste...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of extra-corporeal technology 2020-06, Vol.52 (2), p.135-141
Main Authors: Wisniewski, Andrea, Zimmerman, Matt, Crews, Tyrone, Haulbrook, Alex, Fitzgerald, David C., Sistino, Joseph J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The U.S. healthcare system generates more than five billion pounds of waste each year. Waste disposal has become a serious environmental problem facing healthcare institutions. The operating room is the second largest source of hospital waste, and no current standards exist regarding perfusion waste reuse or recycling. A typical perfusion circuit produces approximately 15 pounds of plastic that ends up incinerated once used. Contaminated perfusion circuits consisting primarily of polyvinyl chloride (PVC) and polycarbonate are difficult to sterilize, reuse, or recycle. A literature review of Internet-based and peer-reviewed publications was conducted to identify all resources that describe sterilizing, dechlorinating, reusing, and recycling of medical-grade disposable products. There are several chemical methods available to re-harvest PVC after it has been properly decontaminated and melted down. Dichlorination by near-critical methanol shows promise in the recovery of additives such as plasticizers, stabilizers, and lubricants. The reinjection of PVC may have ecological and economic advantages. Dechlorinated PVC also creates a less toxic by-product when incinerated. Although this process is not recycling, it lessens the impact of poisonous chlorine gas release into the atmosphere. Sterilizing, dechlorinating, and recycling the perfusion circuit may be a promising avenue for reducing the ecological impact of perfusion waste. Although an economically sensitive mode of reusing, reducing, and recycling a circuit does not currently exist, this presentation will explore the perfusion waste dilemma and present potential solutions in hopes of promoting future reuse and recycling opportunities.
ISSN:0022-1058
2969-8960
DOI:10.1051/ject/202052135