Loading…

Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune?

Context. GJ 1214b, the 6.55 Earth-mass transiting planet recently discovered by the MEarth team, has a mean density of  ~35% of that of the Earth. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a compositio...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2012-02, Vol.538, p.A46
Main Authors: de Mooij, E. J. W., Brogi, M., de Kok, R. J., Koppenhoefer, J., Nefs, S. V., Snellen, I. A. G., Greiner, J., Hanse, J., Heinsbroek, R. C., Lee, C. H., van der Werf, P. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Context. GJ 1214b, the 6.55 Earth-mass transiting planet recently discovered by the MEarth team, has a mean density of  ~35% of that of the Earth. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Aims. In the case of a hydrogen-rich atmosphere, molecular absorption and scattering processes may result in detectable radius variations as a function of wavelength. The aim of this paper is to measure these variations. Methods. We have obtained observations of the transit of GJ 1214b in the r- and I-band with the Isaac Newton Telescope (INT), in the g-, r-, i- and z-bands with the 2.2 m MPI/ESO telescope, in the Ks-band with the Nordic Optical Telescope (NOT), and in the Kc-band with the William Herschel Telescope (WHT). By comparing the transit depth between the the different bands, which is a measure for the planet-to-star size ratio, the atmosphere is investigated. Results. We do not detect clearly significant variations in the planet-to-star size ratio as function of wavelength. Although the ratio at the shortest measured wavelength, in g-band, is 2σ larger than in the other bands. The uncertainties in the Ks and Kc bands are large, due to systematic features in the light curves. Conclusions. The tentative increase in the planet-to-star size ratio at the shortest wavelength could be a sign of an increase in the effective planet-size due to Rayleigh scattering, which would require GJ 1214b to have a hydrogen-rich atmosphere. If true, then the atmosphere has to have both clouds, to suppress planet-size variations at red optical wavelengths, as well as a sub-solar metallicity, to suppress strong molecular features in the near- and mid-infrared. However, star spots, which are known to be present on the host-star’s surface, can (partly) cancel out the expected variations in planet-to-star size ratio, because the lower surface temperature of the spots causes the effective size of the star to vary with wavelength. A hypothetical spot-fraction of  ~10%, corresponding to an average stellar dimming of  ~5% in the i-band, would be able to raise the near- and mid-infrared points sufficiently with respect to the optical measurements to be inconsistent with a water-dominated atmosphere. Modulation of the spot fraction due to the stellar rotation would in such case cause the observed flux variations of GJ 1214.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201117205