Loading…

Processing method determines the long-term stability of particle dispersions in concentrated nanoparticle/polymer suspensions

Since the degree of particle dispersion can determine the physical properties of polymer nanocomposites (PNCs), plenty of studies have focused on the intrinsic parameters of PNCs such as the concentration/size/chemistry of nanoparticles/polymers relevant to the particle microstructure. While the con...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2022-01, Vol.18 (4), p.841-848
Main Authors: Oh, Sol Mi, Lee, Chae Han, Kim, So Youn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the degree of particle dispersion can determine the physical properties of polymer nanocomposites (PNCs), plenty of studies have focused on the intrinsic parameters of PNCs such as the concentration/size/chemistry of nanoparticles/polymers relevant to the particle microstructure. While the consideration of these parameters is based on PNCs being in their equilibrium states, PNCs can be kinetically trapped in a nonequilibrium state during the multiple steps of processing. In other words, processing conditions can contribute more significantly to particle dispersion and the properties of PNCs beyond the effects of the intrinsic parameters. Hence, a systematic understanding of the nonequilibrium behaviour of PNCs is required to achieve the desired properties. In this work, we prepared concentrated suspensions with two different preparation pathways. The two different pathways yield different polymer conformations particularly near the particle surface despite the same composition of particles/polymers as the systems are trapped in a nonequilibrium state. Accordingly, the particle microstructures are also greatly changed by the preparation pathway. We found that even in the presence of solvents, these preparation pathway-dependent nonequilibrium effects on particle microstructures persist after several months of aging and ultimately determine the long-term stability of the particle dispersion. The preparation pathway of concentrated suspensions affects the degree of polymer adsorption, and changes the particle dispersion and rheological properties; moreover, it determines the long-term stability of particle dispersion over several months.
ISSN:1744-683X
1744-6848
DOI:10.1039/d1sm01428e