Loading…

Block Copolymers for Organic Optoelectronics

While polymers hold significant potential as low cost, mechanically flexible, lightweight large area photovoltaics and light emitting devices (OLEDs), their performance relies crucially on understanding and controlling the morphology on the nanometer scale. The ca. 10 nm length scale of exciton diff...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2009-12, Vol.42 (23), p.9205-9216
Main Authors: Segalman, Rachel A, McCulloch, Bryan, Kirmayer, Saar, Urban, Jeffrey J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While polymers hold significant potential as low cost, mechanically flexible, lightweight large area photovoltaics and light emitting devices (OLEDs), their performance relies crucially on understanding and controlling the morphology on the nanometer scale. The ca. 10 nm length scale of exciton diffusion sets the patterning length scale necessary to affect charge separation and overall efficiency in photovoltaics. Moreover, the imbalance of electron and hole mobilities in most organic materials necessitates the use of multiple components in many device architectures. These requirements for 10 nm length scale patterning in large area, solution processed devices suggest that block copolymer strategies previously employed for more classical, insulating polymer systems may be very useful in organic electronics. This Perspective seeks to describe both the synthesis and self-assembly of block copolymers for organic optoelectronics. Device characterization of these inherently complex active layers remains a significant challenge and is also discussed.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma901350w