Loading…

Thermochemistry and Kinetics of the Reaction of 1-Methylallyl Radicals with Molecular Oxygen

The kinetics of the reaction CH3CHCHCH2 + O2 ⇄ CH3CHCHCH2O2 has been studied using laser photolysis/photoionization mass spectrometry. Room-temperature decay constants of the CH3CHCHCH2 radical were determined in time-resolved experiments as a function of bath gas density ([He] = (3−24) × 1016 molec...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1998-11, Vol.102 (45), p.8932-8940
Main Authors: Knyazev, Vadim D, Slagle, Irene R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The kinetics of the reaction CH3CHCHCH2 + O2 ⇄ CH3CHCHCH2O2 has been studied using laser photolysis/photoionization mass spectrometry. Room-temperature decay constants of the CH3CHCHCH2 radical were determined in time-resolved experiments as a function of bath gas density ([He] = (3−24) × 1016 molecule cm-3. The rate constants are in the falloff region under the conditions of the experiments. Relaxation to equilibrium in the addition step of the reaction was monitored within the temperature range 345−390 K. Equilibrium constants were determined as a function of temperature and used to obtain the enthalpy of reaction 1. At high temperatures (600−700 K), no reaction of CH3CHCHCH2 with molecular oxygen could be observed and upper limits to the rate constants were determined (1 × 10-16 cm3 molecule-1 s-1 at 600 K and 2 × 10-16 cm3 molecule-1 s-1 at 700 K). Structures, vibrational frequencies, and energies of several conformations of CH3CHCHCH2, CH3CHCHCH2O2, and CH3CH(OO)CHCH2 were calculated using ab initio UHF and MP2 methods. The results were used to calculate the entropy changes of the addition reaction. These entropy changes combined with the experimentally determined equilibrium constants resulted in the average R−O2 bond energy for terminal and nonterminal addition:  ΔH o 298 = 82.6 ± 5.3 kJ mol-1. Earlier experimental results on the kinetics of relaxation to equilibrium in the reaction of allyl radical with O2 are reanalyzed using an improved kinetic mechanism which accounts for heterogeneous wall decay of the CH2CHCH2O2 adduct. The corrected value of the CH2CHCH2−O2 bond energy (77.0 kJ mol-1) is determined from the reinterpreted data.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp982923a