Loading…

Reversibility and Improved Hydrogen Release of Magnesium Borohydride

Desorption and subsequent rehydrogenation of Mg(BH4)2 with and without 5 mol % TiF3 and ScCl3 have been investigated. Temperature programmed desorption (TPD) experiments revealed a significant increase in the rate of desorption as well as the weight percentage of hydrogen released with additives upo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-03, Vol.114 (11), p.5224-5232
Main Authors: Newhouse, Rebecca J, Stavila, Vitalie, Hwang, Son-Jong, Klebanoff, Leonard E, Zhang, Jin Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Desorption and subsequent rehydrogenation of Mg(BH4)2 with and without 5 mol % TiF3 and ScCl3 have been investigated. Temperature programmed desorption (TPD) experiments revealed a significant increase in the rate of desorption as well as the weight percentage of hydrogen released with additives upon heating to 300 °C. Stable Mg(B x H y ) n intermediates were formed at 300 °C, whereas MgB2 was the major product when heated to 600 °C. These samples were then rehydrogenated and subsequently characterized with powder X-ray diffraction (pXRD), Raman, and NMR spectroscopy. We confirmed significant conversion of MgB2 to fully hydrogenated Mg(BH4)2 for the sample with and without additives. TPD and NMR studies revealed that the additives have a significant effect on the reaction pathway during both dehydrogenation and rehydrogenation reactions. This work suggests that the use of additives may provide a valid pathway for improving intrinsic hydrogen storage properties of magnesium borohydride.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp9116744