Loading…

Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes

Soluble ethyne-linked tetraarylporphyrin arrays that mimic natural light-harvesting complexes by absorbing light and directing excited-state energy have been investigated by static and time-resolved absorption and fluorescence spectroscopies. Of particular interest is the role of the diarylethyne li...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 1996-11, Vol.118 (45), p.11181-11193
Main Authors: Hsiao, Jiunn-Shyong, Krueger, Brent P, Wagner, Richard W, Johnson, Thomas E, Delaney, John K, Mauzerall, David C, Fleming, Graham R, Lindsey, Jonathan S, Bocian, David F, Donohoe, Robert J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soluble ethyne-linked tetraarylporphyrin arrays that mimic natural light-harvesting complexes by absorbing light and directing excited-state energy have been investigated by static and time-resolved absorption and fluorescence spectroscopies. Of particular interest is the role of the diarylethyne linkers in mediating energy transfer. The major conclusions from this study, which is limited to the examination of arrays containing Zn and free-base (Fb) porphyrins, include the following:  (1) Singlet excited-state energy transfer from the Zn porphyrin to the Fb porphyrin is extremely efficient (95−99%). Competitive electron-transfer reactions are not observed. (2) The rate of energy transfer is slowed up to 4-fold by the addition of groups to the linker that limit the ability of the linker and porphyrin to adopt geometries tending toward coplanarity. Thus, the mechanism of energy transfer predominantly involves through-bond communication via the linker. Consistent with this notion, the measured lifetimes of the Zn porphyrin in the dimers at room temperature yield energy-transfer rates ((88 ps)-1 < k trans < (24 ps)-1) that are significantly faster than those predicted by the Förster (through-space) mechanism ((720 ps)-1). Nevertheless, the electronic communication is weak and the individual porphyrins appear to retain their intrinsic radiative and non-radiative rates upon incorporation into the arrays. (3) Transient absorption data indicate that the energy-transfer rate between two isoenergetic Zn porphyrins in a linear trimeric array terminated by a Fb porphyrin is (52 ± 19 ps)-1 in toluene at room temperature, while the time-resolved fluorescence data suggest that it may be significantly faster. Accordingly, incorporation of multiple isoenergetic pigments in extended linear or two-dimensional arrays will permit efficient overall energy transfer. (4) Medium effects, including variations in solvent polarity, temperature, viscosity, and axial solvent ligation, only very weakly alter (≤2.5-fold) the energy-transfer rates. However, the Fb porphyrin fluorescence in the Zn−Fb dimers is quenched in the polar solvent dimethyl sulfoxide (but not in toluene, castor oil, or acetone), which is attributed to charge-transfer with the neighboring Zn porphyrin following energy transfer. Collectively, the studies demonstrate that extended multiporphyrin arrays can be designed in a rational manner with predictable photophysical features and efficient light-harvesting propertie
ISSN:0002-7863
1520-5126
DOI:10.1021/ja961612f