Loading…

Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods

External stimuli, such as ultrasound, magnetic field, and light, can be applied to activate in vivo tumor targeting. Herein, we fabricated polymer encapsulated gold nanorods to couple the photothermal properties of gold nanorods and the thermo- and pH-responsive properties of polymers in a single na...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2014-05, Vol.136 (20), p.7317-7326
Main Authors: Zhang, Zhenjiang, Wang, Jing, Nie, Xin, Wen, Tao, Ji, Yinglu, Wu, Xiaochun, Zhao, Yuliang, Chen, Chunying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:External stimuli, such as ultrasound, magnetic field, and light, can be applied to activate in vivo tumor targeting. Herein, we fabricated polymer encapsulated gold nanorods to couple the photothermal properties of gold nanorods and the thermo- and pH-responsive properties of polymers in a single nanocomposite. The activation mechamism was thus transformed from heat to near-infrared (NIR) laser, which can be more easily controlled. Doxorubicin, a clinical anticancer drug, can be loaded into the nanocomposite through electrostatic interactions with high loading content up to 24%. The nanocomposite’s accumulation in tumor post systematic administration can be significantly enhanced by NIR laser irradiation, providing a prerequisite for their therapeutic application which almost completely inhibited tumor growth and lung metastasis. Since laser can be manipulated very precisely and flexibly, the nanocomposite provides an ideally versatile platform to simultaneously deliver heat and anticancer drugs in a laser-activation mechanism with facile control of the area, time, and dosage. The NIR laser-induced targeted cancer thermo-chemotherapy without using targeting ligands represents a novel targeted anticancer strategy with facile control and practical efficacy.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja412735p