Loading…

Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method

A series of new mesoporous silica materials with MCM-41 type of structure containing a homogeneous layer of organic functional groups inside the pores was prepared using a co-condensation method under low surfactant concentration condition. This reproducible synthetic approach resulted in high surfa...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2003-11, Vol.15 (22), p.4247-4256
Main Authors: Huh, Seong, Wiench, Jerzy W, Yoo, Ji-Chul, Pruski, Marek, Lin, Victor S.-Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of new mesoporous silica materials with MCM-41 type of structure containing a homogeneous layer of organic functional groups inside the pores was prepared using a co-condensation method under low surfactant concentration condition. This reproducible synthetic approach resulted in high surface coverage with several functional groups such as a primary amine, secondary amine, urea, isocyanate, vinyl, and nitrile. In addition, the presence of organoalkoxysilane precursors during the base catalyzed condensation greatly influenced the final particle shape. By changing the precursor or its concentration, the particle morphology was tuned to various shapes, including spheres, tubes, and rods of various dimensions. The synthetic procedures that gave rise to the specific particle morphologies were investigated and the mechanism responsible for shape control was postulated. The structure and functionality of these materials were characterized by field-emission scanning electron microscopy, transmission electron microscopy, solid-state NMR spectroscopy, thermogravimetric analysis, and nitrogen adsorption and desorption studies (BET isotherms and BJH pore size distribution measurements).
ISSN:0897-4756
1520-5002
DOI:10.1021/cm0210041