Loading…

Green Manufacturing of Silyl-Phosphate for Use in 3D NAND Flash Memory Fabrication

Three-dimensional NAND flash memory featuring dozens of vertically stacked memory cells is the state-of-the-art technology for most storage platforms. To fabricate three-dimensional (3D) NAND memory, lateral etching of the Si3N4 layer over SiO2 is an essential step that is conducted through a wet et...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2021-04, Vol.9 (14), p.4948-4956
Main Authors: Lee, Hyun Il, Kim, Hyun Su, Tikue, Elsa Tsegay, Kang, Su Kyung, Zhang, Haoxiang, Park, Ju Won, Yang, SeungHwa, Lee, Pyung Soo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional NAND flash memory featuring dozens of vertically stacked memory cells is the state-of-the-art technology for most storage platforms. To fabricate three-dimensional (3D) NAND memory, lateral etching of the Si3N4 layer over SiO2 is an essential step that is conducted through a wet etching process using a phosphoric acid-based etchant. Silyl-phosphate or highly selective nitride serves as an etching solution additive to control the SiO2 layer dissolution rate. However, silyl-phosphate is prepared with an expensive monomeric silica precursor and at high reaction temperatures and generates environmentally harmful byproduct gases, such as HCl, HF, and CH3OH. This study demonstrates that silyl-phosphate can be prepared using low-cost polymeric silica under a mild reaction temperature by changing the characteristic acidity of phosphoric acid. The possibility of tuning the phosphoric acid acidity was first studied by molecular dynamics simulations, and phosphoric acids with stronger acidity were prepared by the evaporation of water from H3PO4 (85%). The concentrated phosphoric acid enabled a fast reaction of polymeric silica and phosphate at a low reaction temperature (80 °C). The obtained silyl-phosphate lowered the SiO2 layer dissolution rate, thereby yielding a Si3N4/SiO2 layer etching ratio of up to 940. The proposed method offers an environmentally friendly production process for special chemicals used in 3D NAND flash memory fabrication.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.0c05677